Теория и практика машинного обучения — Учебное пособие рассматривает вопросы, связанные с анализом данных: модели, алгоритмы, методы и их реализацию на языке Python. Особое внимание уделено анализу временных рядов. С теоретической стороны машинное обучение – дисциплина, находящаяся на пересечении математической статистики, численных методов оптимизации, теории вероятностей, а также дискретного анализа. С помощью ее методов происходит решение задачи извлечения знаний из данных, которой занимается еще только формирующаяся область «Интеллектуальный анализ данных» (DataMining). С практической же стороны машинное обучение нацелено на создание систем, способных адаптироваться к решению различных задач без явного кодирования алгоритма, то есть систем, способных обучаться. В последних разделах книги обучающемуся предлагаются контрольные вопросы по пройденным темам, а также задачи для выполнения, с помощью которых он сможет проверить себя и закрепить полученные навыки. Книга предназначена для студентов группы направлений 09, а также для студентов других групп направлений, изучающих дисциплины, связанные с разработкой приложений в области анализа данных, в том числе TimeSeriesDataMinig и DataMining.
Название: Теория и практика машинного обучения Автор: Воронина В. В., Михеев А. В., Ярушкина Н. Г. Издательство: УлГТУ Год: 2017 Страниц: 290 Формат: PDF, DJVU